AGC020 C - Median Sum
解法
解説の通り。
空でない部分列の数は 個存在するが、部分列の和が x となるような部分列の構成方法の数え上げは動的計画法で
で求まる。だが、これでは間に合わない。
中央値は配列の合計の 1/2 以上になるということに気づくと、部分列の和が x となるような部分列が構成できるかどうかを判定すれば良いことになる。この DP は BitSet によって高速化出来るため、 で間に合う。すごい。
コード
/// Thank you tanakh!!! /// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let mut s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } fn main() { input!(n: usize, a: [usize; n]); let sum: usize = a.iter().sum(); let mut dp = bitset::BitSet::new(sum + 1); dp.set(0, true); for i in 0..n { let pd = dp.shift_left(a[i]); dp |= pd; } for i in ((sum + 1) / 2)..(sum + 1) { if dp.get(i) { println!("{}", i); return; } } } pub mod bitset { use std::ops::{BitOrAssign, Shl}; const ONE_VALUE_LENGTH: usize = 60; const MAXIMUM: u64 = (1 << ONE_VALUE_LENGTH) - 1; pub fn get_bit_position(index: usize) -> (usize, usize) { let data_index = index / ONE_VALUE_LENGTH; let bit_index = index % ONE_VALUE_LENGTH; (data_index, bit_index) } #[derive(PartialEq, Clone, Debug)] pub struct BitSet { data: Vec<u64>, } impl BitOrAssign for BitSet { fn bitor_assign(&mut self, rhs: Self) { if self.data.len() < rhs.data.len() { self.data.resize(rhs.data.len(), 0); } let n = if self.data.len() > rhs.data.len() { rhs.data.len() } else { self.data.len() }; for i in 0..n { assert!(self.data[i] <= MAXIMUM); assert!(rhs.data[i] <= MAXIMUM); self.data[i] |= rhs.data[i]; } } } impl Shl<usize> for BitSet { type Output = Self; fn shl(self, rhs: usize) -> Self { self.shift_left(rhs) } } impl BitSet { pub fn new(n: usize) -> Self { let size = (n + ONE_VALUE_LENGTH - 1) / ONE_VALUE_LENGTH; BitSet { data: vec![0; size], } } pub fn new_from(value: u64) -> Self { BitSet { data: vec![value] } } pub fn set(&mut self, index: usize, value: bool) { let (data_index, bit_index) = get_bit_position(index); assert!(self.data.len() > data_index); if value { self.data[data_index] |= 1 << bit_index; } else { let tmp = MAXIMUM ^ (1 << bit_index); self.data[data_index] &= tmp; } } pub fn get(&mut self, index: usize) -> bool { let (data_index, bit_index) = get_bit_position(index); assert!(self.data.len() > data_index); self.data[data_index] & (1 << bit_index) != 0 } pub fn shift_left(&self, shift: usize) -> Self { let mut next_data = Vec::new(); let prefix_empty_count = shift / ONE_VALUE_LENGTH; let shift_count = shift % ONE_VALUE_LENGTH; for _ in 0..prefix_empty_count { next_data.push(0); } let mut from_previous = 0; let room = ONE_VALUE_LENGTH - shift_count; for &data in self.data.iter() { let overflow = (data >> room) << room; let rest = data - overflow; let value = (rest << shift_count) + from_previous; assert!(value <= MAXIMUM); next_data.push(value); from_previous = overflow >> room; } if from_previous > 0 { next_data.push(from_previous); } BitSet { data: next_data } } } }