ACPC2016 Day2 J : Char Swap
解法
J : 解説 from Takumi Yamashita
www.slideshare.net元の文字列がアルファベット を 個含むとき、前半と後半に寄せて、 を 個ずつ含むようにします。(解説スライドの例だと aabcbcadda -> aabcd, bcada)
あとは後半を前半の反転にソートします。この時の交換回数は Fenwick Tree で計算できます。
コード
import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.*; /* _ooOoo_ o8888888o 88" . "88 (| -_- |) O\ = /O ____/`---'\____ .' \\| |// `. / \\||| : |||// \ / _||||| -:- |||||- \ | | \\\ - /// | | | \_| ''\---/'' | | \ .-\__ `-` ___/-. / ___`. .' /--.--\ `. . __ ."" '< `.___\_<|>_/___.' >'"". | | : `- \`.;`\ _ /`;.`/ - ` : | | \ \ `-. \_ __\ /__ _/ .-` / / ======`-.____`-.___\_____/___.-`____.-'====== `=---=' ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ pass System Test! */ @SuppressWarnings("unchecked") public class Main { private static class Task { void solve(FastScanner in, PrintWriter out) throws Exception { char[] S = in.next().toCharArray(); int N = S.length; ArrayDeque<Integer>[] pos = new ArrayDeque[26]; for (int i = 0; i < 26; i++) pos[i] = new ArrayDeque<>(); for (int i = 0; i < N; i++) { pos[S[i] - 'a'].add(i); } for (ArrayDeque<Integer> p : pos) if (p.size() % 2 != 0) { out.println(-1); return; } ArrayList<int[]> prefixList = new ArrayList<>(); ArrayList<int[]> suffixList = new ArrayList<>(); for (int i = 0; i < 26; i++) { int s = pos[i].size(); for (int j = 0; j < s / 2; j++) { prefixList.add(new int[]{i, pos[i].pollFirst()}); } for (int j = 0; j < s / 2; j++) { suffixList.add(new int[]{i, pos[i].pollFirst()}); } } Collections.sort(prefixList, (o1, o2) -> Integer.compare(o1[1], o2[1])); Collections.reverse(prefixList); Collections.sort(suffixList, (o1, o2) -> Integer.compare(o1[1], o2[1])); long ans = 0; for (int i = 0; i < prefixList.size(); i++) ans += prefixList.get(i)[1] - i; int[] prefix = new int[N / 2]; for (int i = 0; i < N / 2; i++) prefix[i] = prefixList.get(i)[0]; for (int i = 0; i < suffixList.size(); i++) { pos[suffixList.get(i)[0]].addLast(i); } int[] suffix = new int[N / 2]; for (int i = 0; i < N / 2; i++) { suffix[i] = pos[prefix[i]].pollFirst(); } FenwickTree bit = new FenwickTree(N); for (int i = 0; i < N / 2; i++) { ans += i - bit.sum(suffix[i]); bit.add(suffix[i], 1); } out.println(ans); } class FenwickTree { int N; long[] data; FenwickTree(int N) { this.N = N + 1; data = new long[N + 1]; } void add(int k, long val) { for (int x = k; x < N; x |= x + 1) { data[x] += val; } } // [0, k) long sum(int k) { if (k >= N) k = N - 1; int ret = 0; for (int x = k - 1; x >= 0; x = (x & (x + 1)) - 1) { ret += data[x]; } return ret; } // [l, r) long sum(int l, int r) { return sum(r) - sum(l); } long get(int k) { assert (0 <= k && k < N); return sum(k + 1) - sum(k); } int getAsSetOf(int w) { w++; if (w <= 0) return -1; int x = 0; int k = 1; while (k * 2 <= N) k *= 2; for (; k > 0; k /= 2) { if (x + k <= N && data[x + k - 1] < w) { w -= data[x + k - 1]; x += k; } } return x; } } } /** * ここから下はテンプレートです。 */ public static void main(String[] args) throws Exception { OutputStream outputStream = System.out; FastScanner in = new FastScanner(); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(in, out); out.close(); } private static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int bufferLength = 0; private boolean hasNextByte() { if (ptr < bufferLength) { return true; } else { ptr = 0; try { bufferLength = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (bufferLength <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } private void skipUnprintable() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; } boolean hasNext() { skipUnprintable(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } double nextDouble() { return Double.parseDouble(next()); } double[] nextDoubleArray(int n) { double[] array = new double[n]; for (int i = 0; i < n; i++) { array[i] = nextDouble(); } return array; } double[][] nextDoubleMap(int n, int m) { double[][] map = new double[n][]; for (int i = 0; i < n; i++) { map[i] = nextDoubleArray(m); } return map; } public int nextInt() { return (int) nextLong(); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = nextInt(); return array; } public long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nextLong(); return array; } public String[] nextStringArray(int n) { String[] array = new String[n]; for (int i = 0; i < n; i++) array[i] = next(); return array; } public char[][] nextCharMap(int n) { char[][] array = new char[n][]; for (int i = 0; i < n; i++) array[i] = next().toCharArray(); return array; } public int[][] nextIntMap(int n, int m) { int[][] map = new int[n][]; for (int i = 0; i < n; i++) { map[i] = nextIntArray(m); } return map; } } }