Codeforces Round #369 Div2 E. ZS and The Birthday Paradox
解法
http://mayokoex.hatenablog.com/entry/2016/08/30/083738
- MOD 以上の連続した区間の総乗の剰余を取ると 0 になる。
を求めるとき、2.modPow(n) * 2.modInverse().modPow(k) で求めることができる。
コード
import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.Arrays; import java.util.NoSuchElementException; /* _ooOoo_ o8888888o 88" . "88 (| -_- |) O\ = /O ____/`---'\____ .' \\| |// `. / \\||| : |||// \ / _||||| -:- |||||- \ | | \\\ - /// | | | \_| ''\---/'' | | \ .-\__ `-` ___/-. / ___`. .' /--.--\ `. . __ ."" '< `.___\_<|>_/___.' >'"". | | : `- \`.;`\ _ /`;.`/ - ` : | | \ \ `-. \_ __\ /__ _/ .-` / / ======`-.____`-.___\_____/___.-`____.-'====== `=---=' ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ pass System Test! */ public class E { private static class Task { final int MOD = (int) 1e6 + 3; long modPow(long x, long e) { long ret = 1; long cur = x; while (e > 0) { if ((e & 1) != 0) ret = (ret * cur) % MOD; cur = (cur * cur) % MOD; e /= 2; } return ret; } void solve(FastScanner in, PrintWriter out) { long N = in.nextLong(); long K = in.nextLong(); if (N <= 60 && (1L << N) < K) { out.println("1 1"); return; } if (K < MOD) { long[] modPow = new long[62]; Arrays.fill(modPow, -1); long up = 1; long down = 1; for (int i = 1; i < K; i++) { int cnt = Integer.numberOfTrailingZeros(i); long j = i >> cnt; if (modPow[cnt] < 0) modPow[cnt] = modPow(2, N - cnt); up *= (modPow[cnt] - j + MOD) % MOD; up %= MOD; down *= modPow[cnt]; down %= MOD; } up = (down - up + MOD) % MOD; out.println(up + " " + down); return; } long count = N; long k = K - 1; while (k > 0) { count += k / 2; k /= 2; } BigInteger two = BigInteger.valueOf(2); BigInteger mod = BigInteger.valueOf(MOD); BigInteger up = two.modPow(BigInteger.valueOf(N), mod); up = up.modPow(BigInteger.valueOf(K), mod); up = up.multiply((two.modInverse(mod)).modPow(BigInteger.valueOf(count), mod)); up = up.mod(mod); out.println(up.toString() + " " + up.toString()); } } /** * ここから下はテンプレートです。 */ public static void main(String[] args) { OutputStream outputStream = System.out; FastScanner in = new FastScanner(); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(in, out); out.close(); } private static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int bufferLength = 0; private boolean hasNextByte() { if (ptr < bufferLength) { return true; } else { ptr = 0; try { bufferLength = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (bufferLength <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } private void skipUnprintable() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; } boolean hasNext() { skipUnprintable(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } double nextDouble() { return Double.parseDouble(next()); } double[] nextDoubleArray(int n) { double[] array = new double[n]; for (int i = 0; i < n; i++) { array[i] = nextDouble(); } return array; } double[][] nextDoubleMap(int n, int m) { double[][] map = new double[n][]; for (int i = 0; i < n; i++) { map[i] = nextDoubleArray(m); } return map; } public int nextInt() { return (int) nextLong(); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) array[i] = nextInt(); return array; } public long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) array[i] = nextLong(); return array; } public String[] nextStringArray(int n) { String[] array = new String[n]; for (int i = 0; i < n; i++) array[i] = next(); return array; } public char[][] nextCharMap(int n) { char[][] array = new char[n][]; for (int i = 0; i < n; i++) array[i] = next().toCharArray(); return array; } } }