AOJ 3019 Picnic

解法

ワーシャルフロイド→巡回セールスマン→半分全列挙→個数制約付きナップサック

コード

import java.util

import scala.io.StdIn
import scala.util.Try

object Main extends App {
  val INF: Long = 1e15.toLong
  val (n, x, y) = {
    val in = StdIn.readLine().split(" ").map(_.toInt)
    (in(0), in(1), in(2))
  }
  val sweets = for (_ <- 0 until n) yield {
    val k = StdIn.readLine().toInt
    for (_ <- 0 until k) yield {
      val in = StdIn.readLine().split(" ").map(_.toInt)
      Sweet(in(0), in(1), in(2))
    }
  }

  val dist = for (_ <- 0 until n) yield StdIn.readLine().split(" ").map(_.toLong)
  for (k <- 0 until n) for (i <- 0 until n) for (j <- 0 until n) dist(i)(j) = math.min(dist(i)(j), dist(i)(k) + dist(k)(j))

  val cost = Array.fill[Long](1 << n, n)(INF)
  cost(0)(0) = 0
  for (mask <- 0 until 1 << n)
    for (cur <- 0 until n)
      for (next <- 0 until n)
        if ((mask & (1 << next)) == 0) {
          val add = dist(cur)(next)
          cost(mask | (1 << next))(next) = math.min(cost(mask | (1 << next))(next), cost(mask)(cur) + add)
        }


  def knapsack(dp: Array[Long], available: Seq[Sweet]): Unit = {
    for {
      sweet <- available
      money <- 0 until sweet.price
    } {
      val deque = new util.ArrayDeque[(Int, Long)]()
      var num = 0
      while (num * sweet.price + money <= y) {
        val next = num * sweet.price + money


        val v = dp(next) - num * sweet.value
        while (!deque.isEmpty && deque.peekLast()._2 <= v) deque.pollLast()
        deque.addLast((num, v))

        dp(next) = deque.peekFirst()._2 + num * sweet.value
        if (deque.peekFirst()._1 == num - sweet.remain) deque.pollFirst()

        num += 1
      }
    }
    for (i <- 1 until dp.length) dp(i) = math.max(dp(i), dp(i - 1))
  }


  val prefix = n / 2
  val suffix = n - prefix

  val prefixDp = Array.fill[Long](1 << prefix, y + 1)(0)
  for (prefixMask <- 0 until 1 << prefix) {
    val mask = prefixMask << suffix
    val dp = prefixDp(prefixMask)
    val available = for {
      i <- 0 until n
      if (mask & (1 << i)) != 0
      sweet <- sweets(i)
    } yield sweet
    knapsack(dp, available)
  }

  val suffixDp = Array.fill[Long](1 << suffix, y + 1)(0)
  for (mask <- 0 until 1 << suffix) {
    val dp = suffixDp(mask)
    val available = for {
      i <- 0 until n
      if (mask & (1 << i)) != 0
      sweet <- sweets(i)
    } yield sweet
    knapsack(dp, available)
  }
  var ans = 0L
  for (mask <- 0 until 1 << n) {
    val suffixMask = mask & ((1 << suffix) - 1)
    val prefixMask = mask >> suffix
    val travelingCost = (for (last <- 0 until n) yield {
      cost(mask)(last) + dist(last)(0)
    }).min
    val money = math.min(x - travelingCost, y).toInt
    for (prefixMoney <- 0 to money) {
      val suffixMoney = money - prefixMoney
      val value = prefixDp(prefixMask)(prefixMoney) + suffixDp(suffixMask)(suffixMoney)
      ans = math.max(ans, value)
    }
  }
  println(ans)
}

case class Sweet(price: Int, value: Int, remain: Int)

AIM Tech Round 4 (Div. 1) D. Dynamic Shortest Path

解法

最初にダイクストラで距離を求めておき、各クエリごとにダイクストラで追加で増えた分の距離を計算して加算していく。各クエリごとに距離は 1 しか増えないので、キューを距離の数だけ用意すれば、クエリごとのダイクストラの計算量は  O(V+E) になる。

よって、最初のダイクストラ O( (V+E)log V) クエリごとのダイクストラが全部で  O(Q (V+E) ) となるので、全体で  O( (V+E)(Q+\log V) ) Q=2000, E = 10^5 とかなので、 10 秒あれば間に合う(いいえ)。

コード

use std::io;
use std::str;
use std::usize;
use std::collections::BinaryHeap;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::collections::VecDeque;
use std::cmp;

static INF: i64 = 1 << 60;
static MAX_REQ: usize = 2000000;

fn main() {
    let start = 0;
    let (n, m, q) = {
        let v = read_values::<usize>();
        (v[0], v[1], v[2])
    };

    let mut graph: Vec<Vec<Edge>> = vec![Vec::new(); n];
    let mut edges = Vec::new();
    for _ in 0..m {
        let (from, to, cost) = {
            let v = read_values::<usize>();
            (v[0] - 1, v[1] - 1, v[2] as i64)
        };
        edges.push((from, graph[from].len()));
        graph[from].push(Edge { to: to, cost: cost });
    }

    let mut shortest_dist = dijkstra(start, &graph);
    let mut deque = vec![VecDeque::new(); MAX_REQ];
    let mut add = vec![INF; n];

    let mut modify_queries = Vec::new();

    for _ in 0..q {
        let queries = read_values::<usize>();
        if queries[0] == 1 {
            let to = queries[1] - 1;
            let num = modify_queries.len();

            for edge_idx in &modify_queries {
                let (from, idx): (usize, usize) = edges[*edge_idx];
                unsafe { graph[from].get_unchecked_mut(idx).cost += 1; }
            }
            modify_queries.clear();

            add[start] = 0;
            deque[0].push_back(start);

            for dist in 0..(num + 1) {
                while !deque[dist].is_empty() {
                    let cur = deque[dist].pop_front().unwrap();
                    if add[cur] != dist as i64 {
                        continue;
                    }
                    for e in &graph[cur] {
                        let d = shortest_dist[cur] + add[cur] - shortest_dist[e.to] + e.cost;
                        if d as usize <= num && add[e.to] > d {
                            add[e.to] = d;
                            deque[d as usize].push_back(e.to);
                        }
                    }
                }
            }

            for i in 0..n {
                shortest_dist[i] = cmp::min(shortest_dist[i] + add[i], INF);
                add[i] = INF;
            }

            if shortest_dist[to] >= INF {
                println!("-1");
            } else {
                println!("{}", shortest_dist[to]);
            }
        } else {
            let num = queries[1];
            for i in 0..num { modify_queries.push(queries[i + 2] - 1); }
        }
    }
}

fn dijkstra(start: usize, graph: &Vec<Vec<Edge>>) -> Vec<i64> {
    let n = graph.len();
    let mut heap = BinaryHeap::<Edge>::new();
    heap.push(Edge { to: start, cost: 0 });
    let mut dist = vec![INF; n];
    dist[start] = 0;
    while !heap.is_empty() {
        let p: Edge = heap.pop().unwrap();
        for e in &graph[p.to] {
            if dist[e.to] > e.cost + dist[p.to] {
                dist[e.to] = e.cost + dist[p.to];
                heap.push(Edge { to: e.to, cost: dist[e.to] });
            }
        }
    }
    dist
}

#[derive(Copy, Clone, Eq, PartialEq)]
struct Edge {
    to: usize,
    cost: i64,
}

impl Ord for Edge {
    fn cmp(&self, other: &Edge) -> Ordering {
        other.cost.cmp(&self.cost)
    }
}

impl PartialOrd for Edge {
    fn partial_cmp(&self, other: &Edge) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

fn read_line() -> String {
    let stdin = io::stdin();
    let mut buf = String::new();
    stdin.read_line(&mut buf).unwrap();
    buf
}

fn read_values<T>() -> Vec<T>
    where T: std::str::FromStr,
          T::Err: std::fmt::Debug
{
    read_line()
        .split(' ')
        .map(|a| a.trim().parse().unwrap())
        .collect()
}

会津合宿 2017 2 日目 G : Picnic

解法

ワーシャルフロイドと巡回セールスマン問題の bit DP で、ある町の部分集合を回って戻ってくるのにかかるコストを前計算しておく。

さらに、町の集合を  A_1, A_2 の 2 つに分け、各集合のうちの部分集合を回った時に得られる幸福度を、個数制約付きナップサック問題をといて求める。

すると、  A_1 の部分集合と  A_2 の部分集合を組み合わせることで、ある部分集合の最大値を求めることができる。

コード

import java.util.Scanner

object Main {
  def main(args: Array[String]): Unit = {
    val in = new Scanner(System.in)
    val N = in.nextInt()
    val X = in.nextInt()
    val Y = in.nextInt()
    val foods = (for (_ <- 0 until N) yield {
      val K = in.nextInt()
      (for (_ <- 0 until K) yield {
        val a = in.nextInt()
        val b = in.nextInt()
        val c = in.nextInt()
        (a, b, c)
      }).toArray
    }).toArray

    val dist = (for (_ <- 0 until N) yield (for (_ <- 0 until N) yield in.nextInt()).toArray).toArray
    for {
      k <- 0 until N
      i <- 0 until N
      j <- 0 until N
    } dist(i)(j) = math.min(dist(i)(j), dist(i)(k) + dist(k)(j))

    val cost = Array.fill(1 << (N + 1), N + 1)(Int.MaxValue / 2)
    cost(1)(0) = 0
    for {
      mask <- 0 until (1 << N)
      current <- 0 until N
      next <- 1 until (N + 1)
      if (mask & (1 << current)) != 0
      if (mask & (1 << next)) == 0
    } {
      val nextMask = mask | (1 << next)
      cost(nextMask)(next) = math.min(cost(nextMask)(next), cost(mask)(current) + dist(current)(next % N))
    }

    val bottom = N / 2
    val top = N - bottom

    val deq = new Array[Int](1000000)
    val deqv = new Array[Int](1000000)

    def knapsack(mask: Int, dp: Array[Int]): Unit = {
      dp(0) = 0
      for {
        i <- 0 until N
        if (mask & (1 << i)) != 0
        (price, value, remain) <- foods(i)
        a <- 0 until price
      } {
        var s = 0
        var t = 0

        var num = 0
        while (num * price <= (Y - a)) {
          val v = dp(num * price + a) - num * value
          while (s < t && deqv(t - 1) <= v) {
            t -= 1
          }
          deq(t) = num
          deqv(t) = v
          t += 1

          dp(num * price + a) = deqv(s) + num * value
          if (deq(s) == num - remain) {
            s += 1
          }

          num += 1
        }
      }

      for {
        i <- 1 to Y
      } {
        dp(i) = math.max(dp(i), dp(i - 1))
      }
    }

    val bottomDp = Array.fill[Int](1 << bottom, Y + 1)(-1)
    val topDp = Array.fill[Int](1 << top, Y + 1)(-1)
    for (mask <- 0 until (1 << bottom)) {
      knapsack(mask, bottomDp(mask))
    }
    for (mask <- 0 until (1 << top)) {
      knapsack(mask << bottom, topDp(mask))
    }

    var max = 0
    for {
      mask <- 0 until (1 << N)
    } {
      val moveCost = cost(mask | (1 << N))(N)
      val budget = math.min(Y, X - moveCost)
      val bottomMask = mask & ((1 << bottom) - 1)
      val topMask = mask >> bottom

      if (budget > 0) {
        for {
          bottomBudget <- 0 to budget
        } {
          max = math.max(max, bottomDp(bottomMask)(bottomBudget) + topDp(topMask)(budget - bottomBudget))
        }
      }
    }
    println(max)
  }
}

会津合宿 2017 3 日目 E : Taiyaki-Master and Eater

解法

2次元のBITを貼る。

コード

import java.util.Scanner

import scala.collection.mutable.ArrayBuffer

object Main extends App {
  val in = new Scanner(System.in)
  val H = in.nextInt()
  val W = in.nextInt()
  val T = in.nextInt()
  val Q = in.nextInt()

  var queries = new ArrayBuffer[(Int, Int, Int, Int, Int, Int)]()
  for (_ <- 0 until Q) {
    val t = in.nextInt()
    val c = in.nextInt()
    val h = in.nextInt()
    val w = in.nextInt()
    val (h2, w2) = if (c == 2) {
      (in.nextInt(), in.nextInt())
    } else {
      (0, 0)
    }
    queries.append((t, c, h, w, h2, w2))
    if (c == 0) {
      // 焼き上がり
      queries.append((t + T, -1, h, w, h2, w2))
    }
  }
  queries = queries.sortBy(q => (q._1, q._2))

  val f1 = new Fenwick2D(H, W)
  val f2 = new Fenwick2D(H, W)
  queries.foreach { case (_, c, h, w, h2, w2) =>
    c match {
      case -1 =>
        // 1->2
        if (f1.get(h, w) != 0) {
          f1.update(h, w, 0)
          f2.update(h, w, 1)
        }
      case 0 =>
        // 0->1
        f1.update(h, w, 1)
      case 1 =>
        // 2->0
        f2.update(h, w, 0)
      case 2 =>
        // count
        val a = f2.sum(h, w, h2, w2)
        val b = f1.sum(h, w, h2, w2)
        println(s"$a $b")
    }
  }


}

/**
  * 1-indexed 2-dimensional Fenwick's tree
  *
  * @param h height
  * @param w width
  */
class Fenwick2D(h: Int, w: Int) {
  val N: Int = h + 1
  val M: Int = w + 1
  val data: Array[Array[Long]] = Array.fill[Long](N + 1, M + 1)(0)

  def add(x: Int, y: Int, v: Long): Unit = {
    var i = x
    while (i <= N) {
      var j = y
      while (j <= M) {
        data(i)(j) += v
        j += j & -j
      }
      i += i & -i
    }
  }

  def update(x: Int, y: Int, v: Long): Unit = add(x, y, v - sum(x, y, x, y))

  def get(x: Int, y: Int): Long = sum(x, y, x, y)

  def sum(x0: Int, y0: Int, x1: Int, y1: Int): Long = {

    def partialSum(x: Int, y: Int): Long = {
      var res = 0L
      var i = x
      while (i > 0) {
        var j = y
        while (j > 0) {
          res += data(i)(j)
          j -= j & -j
        }
        i -= i & -i
      }
      res
    }

    partialSum(x1, y1) - partialSum(x0 - 1, y1) - partialSum(x1, y0 - 1) + partialSum(x0 - 1, y0 - 1)
  }


}

AOJ 2828: Matryoshka Doll

解法

取り込まれた人形のコストを 0 として、取り込まれていない人形のコストはそのまま結果に加えるように、最小費用流のグラフを作る。

コード

import java.util.Scanner

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer

object Main extends App {
  val in = new Scanner(System.in)

  def solve(n: Int): Long = {
    val xyz = (for (_ <- 0 until n) yield {
      Array(in.nextInt(), in.nextInt(), in.nextInt()).sorted
    }).toArray


    val source = n * 2
    val sink = source + 1
    val minimumCostFlow = new MinimumCostFlow(sink + 1)
    for {
      i <- 0 until n
      j <- 0 until n
      if i != j
      if xyz(i)(0) < xyz(j)(0)
      if xyz(i)(1) < xyz(j)(1)
      if xyz(i)(2) < xyz(j)(2)
    } {
      minimumCostFlow.addEdge(i, n + j, 1, 0)
    }
    for (i <- 0 until n) {
      minimumCostFlow.addEdge(source, i, 1, 0)
      minimumCostFlow.addEdge(i, sink, 1, xyz(i)(0) * xyz(i)(1) * xyz(i)(2))
      minimumCostFlow.addEdge(i + n, sink, 1, 0)
    }
    minimumCostFlow.calculateCost(source, sink, n)
  }

  def loop(): Unit = {
    while (true) {
      val n = in.nextInt()
      if (n == 0) {
        return
      }
      val ans = solve(n)
      println(ans)
    }
  }

  loop()

}

class Edge(val to: Int, var cap: Long, val cost: Long, val rev: Int)

class MinimumCostFlow(V: Int) {
  val graph: Array[ArrayBuffer[Edge]] = (for (_ <- 0 until V) yield new ArrayBuffer[Edge]()).toArray
  val prevV = new Array[Int](V)
  val prevE = new Array[Int](V)

  def addEdge(from: Int, to: Int, cap: Long, cost: Long): Unit = {
    graph(from).append(new Edge(to, cap, cost, graph(to).size))
    graph(to).append(new Edge(from, 0, -cost, graph(from).size - 1))
  }

  def calculateCost(source: Int, sink: Int, flow: Long): Long = {
    val INF = Long.MaxValue / 2
    var cost = 0L
    var residue = flow
    val potential = new Array[Long](V)
    while (residue > 0) {
      val dist = Array.fill[Long](V)(INF)
      dist(source) = 0
      val queue = mutable.PriorityQueue.empty[(Long, Int)](implicitly[Ordering[(Long, Int)]].reverse)
      queue.enqueue((0, source))
      while (queue.nonEmpty) {
        val p = queue.dequeue()
        val v = p._2
        if (dist(v) >= p._1) {
          for (i <- graph(v).indices) {
            val e = graph(v)(i)
            val u = e.to
            if (e.cap > 0 && dist(u) > dist(v) + e.cost + potential(v) - potential(u)) {
              dist(u) = dist(v) + e.cost + potential(v) - potential(u)
              prevV(u) = v
              prevE(u) = i
              queue.enqueue((dist(u), u))
            }
          }
        }
      }
      if (dist(sink) == INF) {
        return -1
      }

      for (v <- 0 until V) {
        potential(v) += dist(v)
      }
      var d = residue
      var v = sink
      while (v != source) {
        d = math.min(d, graph(prevV(v))(prevE(v)).cap)
        v = prevV(v)
      }
      residue -= d
      cost += d * potential(sink)

      v = sink
      while (v != source) {
        val e = graph(prevV(v))(prevE(v))
        e.cap -= d
        graph(v)(e.rev).cap += d
        v = prevV(v)
      }
    }
    return cost
  }
}

ARC082 F - Sandglass

解法

解説動画の通りにやった。

最初に a 入っている時の t 秒後の砂の量は以下のように書ける。

\begin{eqnarray}
f_t(a)=
\left\{
\begin{array}{ll}
a + x_1 & (a < x_1) \\
a + y & (x_1 \leq a \leq x_2) \\
a + x_2 & (x_2 < a)
\end{array}
\right.
\end{eqnarray}

この  x_1, x_2, y をシミュレーションしていけば良い。

コード

use std::io;
use std::str;
use std::usize;
use std::cmp;


static INF: i32 = 2000000000;

fn main() {
    let x = read_values::<i32>()[0];
    let k = read_values::<usize>()[0];
    let r = {
        let mut r = read_values::<i32>();
        r.push(INF);
        r
    };
    let q = read_values::<usize>()[0];
    let (t, a) = {
        let mut t = vec![INF; q + 1];
        let mut a = vec![INF; q + 1];
        for i in 0..q {
            let v = read_values::<i32>();
            t[i] = v[0];
            a[i] = v[1];
        }
        (t, a)
    };

    let mut y = 0;
    let mut x1 = 0;
    let mut x2 = x;
    let mut upper = true;

    let mut flat = false;
    let mut flat_height = 0;

    let mut r_head = 0;
    let mut t_head = 0;
    let mut prev_time = 0;
    while r_head < k || t_head < q {
        if r[r_head] < t[t_head] {
            // turn
            let time = r[r_head] - prev_time;
            if upper {
                y -= time;
                if y < 0 && x1 < -y {
                    x1 = -y;
                }
            } else {
                y += time;
                if y > 0 && x2 > x - y {
                    x2 = x - y;
                }
            }

            if flat {
                if upper {
                    flat_height -= time;
                } else {
                    flat_height += time;
                }
                flat_height = cmp::max(flat_height, 0);
                flat_height = cmp::min(flat_height, x);
            } else if x1 >= x2 {
                flat = true;
                if upper {
                    flat_height = 0;
                } else {
                    flat_height = x;
                }
            }

            prev_time = r[r_head];
            upper = !upper;
            r_head += 1;
        } else {
            // query
            let time = t[t_head] - prev_time;

            let mut ans = if a[t_head] < x1 {
                x1 + y
            } else if x2 < a[t_head] {
                x2 + y
            } else {
                a[t_head] + y
            };

            if upper {
                ans -= time;
            } else {
                ans += time;
            }

            if flat {
                ans = flat_height;
                if upper {
                    ans -= time;
                } else {
                    ans += time;
                }
            }

            ans = cmp::max(0, ans);
            ans = cmp::min(x, ans);
            println!("{}", ans);

            t_head += 1;
        }
    }
}

fn read_line() -> String {
    let stdin = io::stdin();
    let mut buf = String::new();
    stdin.read_line(&mut buf).unwrap();
    buf
}

fn read_values<T>() -> Vec<T>
    where T: std::str::FromStr,
          T::Err: std::fmt::Debug
{
    read_line()
        .split(' ')
        .map(|a| a.trim().parse().unwrap())
        .collect()
}

ARC082 E - ConvexScore

解法

解説の通りにやった。

 score = 2^{n-|S|} の意味するところを考える。これは凸包が S となるような部分集合の数である。

よって求める答えは各凸包について部分集合の数を数えていけば良いが、それは難しいので、全ての部分集合から、凸包が正の面積とならない部分集合を除けば良い。

コード

use std::io;
use std::str;
use std::usize;
use std::cmp;

fn mod_pow(x: i64, mut exp: i64, modulo: i64) -> i64 {
    let mut result = 1;
    let mut cur = x;
    while exp > 0 {
        if exp & 1 == 1 {
            result = (result * cur) % modulo;
        }
        cur = (cur * cur) % modulo;
        exp >>= 1;
    }
    result
}

fn main() {
    let modulo = 998244353;
    let n = read_values::<usize>()[0];
    let (x, y) = {
        let mut x = vec![0; n];
        let mut y = vec![0; n];
        for i in 0..n {
            let v = read_values::<i64>();
            x[i] = v[0];
            y[i] = v[1];
        }
        (x, y)
    };

    let mut ans = mod_pow(2, n as i64, modulo);
    ans -= 1;
    ans -= n as i64;
    ans = (ans + modulo) % modulo;

    // 両端がそれぞれ i, j となるような線分に乗っている点の数を数える
    for i in 0..n {
        for j in (i + 1)..n {
            let dx = x[i] - x[j];
            let dy = y[i] - y[j];

            let mut count = 0;
            let mut left = i;
            let mut right = j;
            for k in 0..n {
                let kx = x[i] - x[k];
                let ky = y[i] - y[k];
                if dx * ky - kx * dy == 0 {
                    left = cmp::min(left, k);
                    right = cmp::max(right, k);
                    count += 1;
                }
            }

            // 両端が i, j でない時はスルー
            if left != i || right != j {
                continue;
            }

            // 凸包の面積が 0 であるような部分集合のサイズ
            let subset = mod_pow(2, count, modulo) - count - 1;
            ans = (ans + modulo - subset) % modulo;
        }
    }

    println!("{}", ans);
}

fn read_line() -> String {
    let stdin = io::stdin();
    let mut buf = String::new();
    stdin.read_line(&mut buf).unwrap();
    buf
}

fn read_values<T>() -> Vec<T>
    where T: std::str::FromStr,
          T::Err: std::fmt::Debug
{
    read_line()
        .split(' ')
        .map(|a| a.trim().parse().unwrap())
        .collect()
}